The Role of Annihilators in a Commutative R-Near Ring

¹ D. Radha, ² C. Dhivya ^{1,2} PG and Research Department of Mathematics A.P.C. Mahalaxmi College for Women, Thoothukudi

Abstract

In this paper some results on R-near ring were obtained. The behaviour of identities and annihilators in respect of R-near ring have been discussed. Some properties using the concept of S-near ring, S'-near ring, Boolean were proved. A structure theorem for R-near ring is also obtained. That is If N is a R-near ring then aNbN = aNb for all $a, b \in N$. It is also proved that Every S-near ring in a R-near ring is S'-near ring and the converse follows when R-near ring is sub commutative.

Mathematics Subject Classification: 16Y30

Keywords: Boolean, Commutative, Identity, S-near ring, S'-near ring.

1.Introduction

Near rings can be thought of as generalized rings: if in a ring we ignore the commutativity of addition and one distributive law, we get a near ring. Gunter Pilz "Near Rings" is an extensive collection of the work done in the area of near rings.

Throughout this paper N stands for a right near ring (N, +, .) with at least two elements and '0' denotes the identity element of the group (N, +) and we write xy for x.y for any two elements x, y of N. Obviously 0n = 0 for all $n \in N$. If, in addition, n0 = 0 for all $n \in N$ then we say that N is zero symmetric. For any subset A of N, we denote A^* the set of all nonzero elements of A. In particular $N^* = N - \{0\}$.

2. Main Results

Definition 2.1

N is called a **R-near ring** if for every $a \in N$ there exists $x \in N$ such that xax = xa.

Theorem 2.2

Let N be a R-near ring. If N is both commutative and Boolean near ring then every right identity of N is a left identity of N.

Proof

Since N is a R-near ring, for every $a \in N$ there exists $x \in N$ such that xax = xa. If e is the right identity of N then xe = x (1) for all $x \in N$. Now xe = xex = (xe)x = (ex)x (Since N is commutative) = $e(xx) = ex^2 = ex$ (Since N is Boolean) = ex (By (1)). That is ex = x for all $x \in N$. Thus e is a left identity of N.

Theorem 2.3

Let *N* be a R-near ring. If for all $x, y \in N$, xy is a left identity with commutativity then x and y are left identities.

Proof

Since N is a R-near ring, for every $a \in N$, there exists $x \in N$ such that xax = xa. Let $x, y \in N$. Assume that xy is a left identity. Let $n \in N$. Therefore xyn = n. $\Rightarrow y(xyn) = yn \Rightarrow (yxy)n = yn \Rightarrow (yx)n = yn \Rightarrow (xy)n = yn$ (Since N is commutative) $\Rightarrow n = yn$. That is yn = n. $\Rightarrow x(yn) = xn \Rightarrow (xy)n = xn \Rightarrow n = xn$. That is xn = n. Thus x and y are left identities.

Theorem 2.4

Let N be a R-near ring. If x and y are left identities for all $x, y \in N$ then xy is a left identity.

Proof

Let $x, y \in N$. Assume that x and y are left identities. Therefore xn = n and yn = n for all $n \in N$. Now (xy)n = x(yn) = xn = n. That is (xy)n = n for all $n \in N$. Thus xy is a left identity.

Theorem 2.5

Let N be a R-near ring. If $(0: xy) = \{0\}$ then xy is the right identity for all $x, y \in N$.

Proof

Let $z \in N$. Now $(z - zxy)xy = zxy - z(xy)^2 = zxy - zxy$ (Since $xy \in E$) = 0. That is (z - zxy)xy = 0. Therefore $z - zxy \in (0:xy)$. Since $(0:xy) = \{0\}$, z - zxy = 0. This implies z = zxy. That is zxy = z. Thus xy is the right identity of N.

Theorem 2.6

Let N be a R-near ring. If N is commutative then (0: xy) = (0: yx) for all $x, y \in N$.

Proof

Let $n \in (0:xy)$. This implies nxy = 0. Now nyx = n(yx) = n(yxy) = n(yx)y = n(xy)y = n(xy)y = n(xy)y = 0. That is nyx = 0. This implies $n \in (0:yx)$. Therefore $(0:xy) \subset (0:yx)$... (1). In a similar fashion, we can obtain the reverse inclusion $(0:yx) \subset (0:xy)$... (2). From (1) and (2) we get (0:xy) = (0:yx).

Proposition 2.7

If *N* is a R-near ring then aNbN = aNb for all $a, b \in N$.

Proof

Since N is a R-near ring, for every $a \in N$ there exists $x \in N$ such that xax = xa. Let $y \in aNbN$. Then there exists $n, n' \in N$ such that $y = anbn' = an(bn') = an(bn'b) = a(nbn')b \in aNb$. That is $y \in aNb$. Therefore $aNbN \subset aNb$... (1). Now let $z \in aNb$. Then

there exists $m \in N$ such that $z = amb = a(mb) = ambm \in aNbN$. That is $z \in aNbN$. Therefore $aNb \subset aNbN \dots (2)$. From (1) and (2) we get aNbN = aNb.

Theorem 2.8

If *N* is a R-near ring then every S-near ring is S'-near ring.

Proof

Since N is R-near ring, for every $a \in N$, there exists $x \in N$ such that xax = xa. Let $x \in N$. Since N is an S-near ring $x \in Nx$, then there exists $y \in N$ such that x = yx. Therefore xy = (yx)y = yxy = yx = x. That is x = xy. This implies $x \in xN$. Thus N is an S'-near ring.

Corollary 2.9

If N is a R-near ring with subcommutativity then every S'-near ring is S-near ring.

Proof

Let *N* be a R-near ring. Since *N* is a *S'*-near ring, $x \in xN$ for all $x \in N$. This implies $x \in Nx$ (Since *N* is subcommutative). Hence *N* is a S-near ring.

Theorem 2.10

If N is a R-near ring then every S'-near ring is Boolean.

Proof

Let $x, a \in N$. Since N is a R-near ring, xax = xa. Since N is an S'-near ring, $x \in xN$. Then there exists $y \in N$ such that x = xy. This implies $x^2 = x$. x = (xy)x = xyx = xy = x. That is $x^2 = x$. Hence N is Boolean.

Corollary 2.11

If N is R-near ring then every Boolean near ring is S'-near ring when N is α_2 near ring.

Proof

Let N be R-near ring. Since N is Boolean, $x^2 = x$ for all $x \in N$. Let $a \in N$. Now $xa = x^2a = x(xa) = x(xax) = x^2ax = xax = x$. That is x = xa. This implies $x \in xN$. Hence N is S'-near ring.

Theorem 2.12

If N is R-near ring then every α_2 near ring is S-near ring.

Proof

Let N be a R-near ring. Since N is α_2 near ring, for every $a \in N^*$ there exists $x \in N^*$ such that xax = x. This implies xa = x. That is x = xa. This implies $x \in xN$. Hence N is S'-near ring.

Corollary 2.13

Let N be a R-near ring. If N is Boolean, then every S'-near ring is α_2 near ring.

Proof

Let *N* be a R-near ring. Since *N* is *S'*-near ring, $x \in xN$ for all $x \in N$. $\Rightarrow x = xa$ for some $a \in N^*$. $x \cdot x = xax \Rightarrow x^2 = xax \Rightarrow x = xax$ (Since *N* is Boolean). Hence *N* is α_2 near ring.

Corollary 2.14

Let N be a R-near ring. If N is subcommutative then every α_2 near ring is S'-near ring.

Proof

Let N be a R-near ring. By Theorem 3.12, every α_2 near ring is S-near ring. We know that every S-near ring is S'-near ring when N is subcommutative. Every α_2 near ring is S'-near ring.

Corollary 2.15

Let N be a R-near ring with commutativity. If N is S-near ring then N is α_2 near ring.

Proof

Let N be a R-near ring. Since N is S-near ring, $x \in Nx$ for all $x \in N$. This implies x = ax for some $a \in N$. Now xa = axa. This implies xax = axax = a(xax) = a(xa) = a(ax) (Since N is commutative) = ax = x. That is x = xax. Hence N is α_2 near ring.

4. References

- 1. R.Balakrishnan and S.Suryanarayanan, P(r,m) near-rings, Bull. Malaysian Math., Sc. Soc. (Second Series) 23: 2000, 117-130.
- 2. Gunter Pilz, Near Rings, North Holland, Amsterdam, 1983.
- 3. K.Karthy and P.Dheena, On unit regular near-rings, Journal of the Indian Math., Soc. Vol.68, Nos 1-4: 2001, 239-243.
- 4. J.D.P.Meldrum, Near-rings and their links with groups, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985.
- D.Radha and V.Selvi, Stable and Pseudo Stable Gamma Near Rings, Proceedings on National Conference on Recent Trends in Pure and Applied Mathematics, September 2017, ISBN: 978-81-935198-1-3.
- D.Radha and C.Raja Lakshmi, A Study on Semicentral Semi Near rings, Proceedings on National Seminar on New Dimensions in Mathematics and its Applications, October 17, 2018, ISBN No: (yet to receive).
- D.Radha and C.Raja Lakshmi, A Study on P-Weakly Regular Near-Ring, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, Issue 6, June 2019, ISSN (Online): 2349 – 5162.

- 8. D.Radha and P.Meenakshi, Some Structures of Idempotent Commutative Semigroup, International Journal of Science, Engineering and Management (IJSEM) Vol 2, Issue 12, December 2017, ISSN (Online) 2456 -1304.
- 9. D.Radha and R.Rajeswari, On Quasi Weak Commutative Semi Near Ring, International Journal of Science, Emerging and Management, Vol 4, January 2019, ISSN (Online): 2456 1304.
- 10. D.Radha and C.Dhivya, On S Near Rings and S' Near Rings with Right Bipotency, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, Issue 2, February 2019, ISSN (Online): 2349 5162.
- 11. D.Radha and C.Raja Lakshmi, A Study on Pseudo Commutative Seminear Rings, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, Issue 2, February 2019, ISSN (Online): 2349 5162.
- 12. D.Radha and J.Sivaranjini, On Left Bipotent Γ Semi Near Ring, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, Issue 2, February 2019, ISSN (Online): 2349 5162.
- 13. D.Radha, M.Vinutha and C.Raja Lakshmi, A Study on GS-Near Ring, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, Issue 2, February 2019, ISSN (Online): 2349 5162.
- 14. Dr.D.Radha, C.Dhivya, B₂ Near Rings, Proceedings of the Instructional School on Emerging Trends in Advance Mathematics ISETAM 2019, February 2019, Page (136 143).
- 15. D.Radha, C.Dhivya and S.R.Veronica Valli, A Study on Quasi Weak Commutative Gamma Near Rings, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, Issue 6, June 2019, ISSN (Online): 2349 5162.
- 16. D.Radha, M.Vinutha and C.Dhivya, On Prime Semi Near Rings, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, Issue 6, June 2019, ISSN (Online): 2349 - 5162.
- 17. Radha.D and Dhivya.C, Role of α_1 and α_2 Near Ring in Boolean S-Near Ring, International Multidisciplinary Innovative Research Journal An International referred e-journal, Vol IV, Issue 1, November 2019, ISSN (Online): 2456 4613.
- 18. D.Radha and C.Raja Lakshmi, A Study on Primitive Idempotents in Semicentral Seminear-rings, International Multidisciplinary Innovative Research Journal An International refereed e-journal, Vol IV, Issue 1, November 2019, ISSN (Online): 2456 4613.

- 19. D.Radha, C.Dhivya, M.Vinutha, K.MuthuMaheswari, S.R.Veronica Valli, A Study on R Near Ring, JETIR Vol 6, Issue 12, December 2019, ISSN (Online): 2349 5162, Page (434 439).
- 20. D.Radha, C.Dhivya, On Unit B₂ Near Rings, Studies in Indian Place Names (UGC Care Journal), Vol 40, Issue 70, March 2020, ISSN (Online) 2394 3114, Page (3413 3418).
- 21. Dr.D.Radha, C.Dhivya, A Study on CM (2,2) Near Ring, Science, Technology and Development, Vol X, Issue III, March 2021, ISSN (Online) 0950 0707, Page (626 633).
- 22. S.Uma, R.Balakrishnan and T.Tamizh Chelvam, α_1 , α_2 Near-Rings, International Journal of Algebra, Vol.4, 2010, no.2, 71-79.